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We perform the first amplitude analysis of experimental data using deep neural networks to determine
the nature of an exotic hadron. Specifically, we study the line shape of the Pcð4312Þ signal reported by the
LHCb collaboration, and we find that its most likely interpretation is that of a virtual state. This method can
be applied to other near-threshold resonance candidates.
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I. INTRODUCTION

Many hadron candidates that deviate from the quark
model expectations [1] have been discovered in the last
years [2,3]. The field of hadron spectroscopy has flourished
attempting to provide a comprehensive picture of the new
states. Many different approaches have been proposed to
explain their underlying nature, becoming a playground

for testing new techniques and novel physical interpreta-
tions [4–7].
To determine if an experimental signal corresponds to a

hadron resonance, it is necessary to perform an amplitude
analysis in order to extract its physical properties such as
mass, width, couplings, and quantum numbers. Most of
the data analyses follow a top-down approach, where the
amplitudes are derived from a microscopic model.
The advantage is that it assigns a physical interpretation
to the signal. The caveat is that the results are biased by the
assumed dynamics. Another possibility is to proceed
in a bottom-up approach. By considering a number of
minimally-biased amplitudes compatible with physical
principles and fitting them to data, one can determine
the existence and properties of resonances in the least
model-dependent way. Even though in this approach there
is no assumed microscopic model, it is still possible to
deduce the nature of the underlying dynamics from the
analytic properties of the amplitudes.
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For example, both methods were recently used to
provide an interpretation of the Pcð4312Þ signal found
by LHCb in the Λ0

b → K−J=ψp decay [8]. This measure-
ment is of particular interest because, if due to a resonance,
then it would contain five valence quarks, which is beyond
the baryon lore. The signal peaks approximately 5 MeV
below the Σþ

c D̄0 threshold, making it a primary candidate
for a hadron molecule. Near-threshold enhancements of the
cross section are known phenomena in particle physics,
e.g., the weakly-bound deuteron in proton-neutron scatter-
ing. The molecular interpretation was found to be com-
patible with the data in [9]. Another microscopic
interpretation is that the signal is a kinematical effect
generated by particle rescattering [10]. The Pcð4312Þ pole
position was first obtained in [11] following a bottom-up
approach, favoring a virtual state interpretation, i.e., an
attractive interaction that is not strong enough to bind a
state, as it happens, for example, in neutron-neutron
scattering [12].
The evolution of computing capabilities during the last

decades has allowed to develop and employ powerful
numerical techniques to unravel the structure of matter,
with machine learning acquiring a prominent role. In
theoretical hadron physics, techniques such as genetic
algorithms [13] and neural networks [14] have been
exploited as fitters and/or interpolators. Recently, the idea
of using deep neural networks (DNN) as model classifiers
was benchmarked against the well-known nucleon-nucleon
bound state [15] and pion-nucleon resonances [16].
In this work we develop and benchmark a systematic

approach to apply DNNs as a model-independent tool to
analyze and interpret experimental data. Following the
bottom-up strategy, we construct generic amplitudes to
train the DNNs. We then use it as a model classifier to infer
the physical content of the data. One clear advantage
compared to standard χ2 fits is that DNNs determine the
probability of each physical interpretation, as they learn the
subtle classification boundary between them. We teach
DNNs how to recognize these different phases by targeting
the specific regions of the parameter space (which yield
stable solutions) that might be difficult to reach during
optimization, or might require high resolution spectra to
detect. The result of this is that we no longer need
to explore large parameter spaces, but can use DNNs to
efficiently extract information from the spectra that deter-
mines on which side of the boundary we are located. As
proof of concept, we apply this method to the Pcð4312Þ
signal.

II. PHYSICS BASIS FOR THE NEURAL NETWORK

We focus on the J=ψp invariant mass distribution
reported by the LHCb in [8]. This can be parametrized
as [11,17]

IðsÞ ¼ ρðsÞ½jPðsÞTðsÞj2 þ BðsÞ�; ð1Þ

where s is the J=ψp invariant mass squared, BðsÞ and PðsÞ
are smooth functions, and ρðsÞ the three-body phase space.
The amplitude TðsÞ encodes the dynamics of the J=ψp
rescattering and, in particular, contains the details of the
Pcð4312Þ. Close to the Σþ

c D̄0 threshold, it can be expanded
as follows:

TðsÞ ¼ m22 − ik2
ðm11 − ik1Þðm22 − ik2Þ −m2

12

; ð2Þ

where k1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s−ðmψþmpÞ2
q

and k2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s−ðmΣþ
c
þmD̄0Þ2

q

.

This Taylor expansion could originate from any micro-
scopic model. The question is what is the range of validity?
If other singularities close by were present, then the
expansion would break down in this region. The impact
of triangle singularities was estimated to be small in [8],
and so was the relevance of higher-order terms in the
expansion [11]. It should be noted though, that if other
singularities were close enough to impact, then the model
that describes them could be included in the training set of
the DNN. In this case we mean to benchmark the approach
by comparing to the known result in [11] as described
by Eq. (2).
This function can be analytically continued for complex

values of s. Since the square roots are multivalued, the
amplitude maps onto four Riemann sheets, represented in
Fig. 1. By construction, this amplitude has four poles in the
complex s plane. Two of them are a conjugated pair that
appears either on the II or IV sheet, close to the Σþ

c D̄0

threshold where the expansion holds. The other two poles
lay far away from the region of interest and have no
physical interpretation. The pole position and sheet affect
the observed line shape. Since the Eq. (1) is based on an
expansion around the Σþ

c D̄0 threshold, it is only reliable in
its vicinity. We thus have to ensure that the DNN learn from
the appropriate invariant mass window.
If m12 → 0, then the Σþ

c D̄0 channel decouples from the
J=ψp one. In this limit, the Pcð4312Þ pole would become
either a stable bound state, or a virtual threshold enhance-
ment, depending on whether the pole would approach the
positive or negative Imk2 axis, as shown in Fig. 1. This is
controlled by the sign of the m22 parameter: if it is positive
(negative), then the resonance corresponds to a virtual
(bound) state. From the figure one can also appreciate that
poles on the II (IV) sheet are more likely to be bound
(virtual) states, as the sheet borders with the positive
(negative) semiaxis.
We construct a training dataset of 105 line shapes,

generated by evaluating Eq. (1) for intensity parameters
uniformly sampled within a wide range of values (see
Supplemental Material [19] for details). We then obtain
65 intensity values by evaluating the line shape in the
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[4.251, 4.379] GeV invariant mass region in 2 MeV bins.
The intensity line shapes were convoluted with the exper-
imental resolution, and 5% Gaussian noise was added to the
signal, to have statistical uncertainties that resemble the
ones reported in Ref. [8]. An additional validation set is
generated to monitor the generalization performance of the
model during training. To each line shape, we attach a label
according to the bound/virtual nature and the Riemann
sheet where the pole lays, i.e., bj2, bj4, vj2, and vj4.
Figure 1 shows examples of (noiseless) training line shapes
for each class.

III. TRAINING, VALIDATION, AND INVARIANT
MASS WINDOW

We build a deep neutral network using the PyTorch
framework [20] that takes (noisy) line shapes as an input
and predicts the corresponding class fbj2; bj4; vj2; vj4g.
For optimization purposes, the line shapes are first rescaled
between 0 and 1 as a normalization before we feed them
into the network. The deep neutral network consists of an
input layer with as many nodes as there are energy bins,
followed by two fully-connected hidden layers with 400
and 200 nodes, respectively, and finally an output layer

with four nodes that correspond to the four classes. After
each hidden layer we set a dropout probability that
randomly sets nodes to zero, to improve generalization
performance. The deep neutral network is trained using the
Adam optimizer [21]. The details of the procedure are given
in the Supplemental Material [19]. We train the DNN for
100 passes of the full training dataset through the DNN,
also known as epochs. Figure 2 shows the training and
validation sets accuracy for different levels of Gaussian
noise, as well as the confusion matrix for the case of 5%
noise. This shows how the experimental uncertainty limits
the accuracy, as expected. With this setup, the DNN learns
the subtleties of the intensity line shapes associated with
each one of the four different resonant pole structures.
However, in order to obtain our final DNN classifier, we
need to select the appropriate invariant mass window
around the Pcð4312Þ signal, where we allow the DNN
to attribute importance. We introduce a systematic method
based on Shapley additive explanations (SHAP) values [22]
to select a proper window. Using SHAP values, we can
break down a prediction to show how each bin impacts
classification. Therefore, we train a first deep neutral
network to a wide range of invariant masses [4.1,
4.4] GeV. A positive (negative) SHAP value indicates that
a given data point is pushing the DNN classification in
favor of (against) a given class. Large absolute SHAP

FIG. 2. Top panel: accuracy as a function of the noise level σ of
the training and validation datasets after 100 epochs in the [4.251,
4.379] GeVenergy range. Bottom panel: confusion matrix for the
case of σ ¼ 5%. Percentages in the confusion matrix refer to the
prediction accuracy.

FIG. 1. Analytic structure of the amplitude near the Σþ
c D̄0

threshold. The adjacent Riemann sheets are continuously con-
nected along the axes. The four possible resonant pole structures,
that correspond to the classification classes, are depicted together
with example line shapes. When the J=ψp and Σþ

c D̄0 channels
decouple, the poles move to the imaginary k2 axis along paths by
the arrows. Poles moving to the positive (negative) axis corre-
spond to bound (virtual) states. The bottom-right inset shows the
data from LHCb in the Pcð4312Þ region. The layout of the figure
is inspired by [18].
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values imply a large impact of a given mass bin on the
classification, as shown in Fig. 3. The mass interval used
here is the same as in [11]. This choice is confirmed by the
SHAP values analysis shown in Fig. 3. However, we
checked that the results are qualitatively unchanged even
if a wider window is selected.

IV. SIGNAL ANALYSIS

We are now in a position to generate predictions on the
nature of the pole on the actual experimental LHCb data.
We pass the three datasets from [8] through the DNN. We
remind that one is the original Λ0

b → K−J=ψp dataset,
while two have sharp or smooth cuts that suppress the
background from Λ� resonances. The output probabilities
for each class are summarized in Table I. It is apparent that
the virtual interpretation is strongly favored, specifically the
vj4 class. To properly quantify the uncertainty of this
prediction, we use two Monte Carlo based methods:
bootstrap [23,24] and dropout [25]. Both methods aim at

producing probability densities for the generated predic-
tions on the LHCb data, as detailed in the Supplemental
Material [19], and yield the same conclusions. The prob-
ability densities of the four classes are shown in Fig. 4.
Class vj4 is heavily preferred, while bj4 is strongly
rejected. Classes bj2 and vj2 attain low probabilities, in
particular, for the datasets with background rejection.
Hence, we conclude that a virtual state with its pole placed
on the IV Riemann sheet is the highly preferred interpre-
tation of the Pcð4312Þ signal.
The DNN classifier can provide further information on

which invariant mass region contributes most strongly to
this prediction, by repeating the SHAP analysis for the
experimental data, as shown in Fig. 5. It is apparent how the
region close to threshold determines the DNN classifica-
tion. Slightly above the Σþ

c D̄0 threshold, data favor the vj4
class, while rejecting the vj2 one. Below threshold, the vj4
and vj2 classes are preferred to bj2, and bj4 is rejected.

FIG. 3. Distribution of SHAP values as a function of the J=ψp
invariant mass for the four classes for the training data with a 5%
noise level. The shaded region corresponds to the 68% confidence
level. The position of the Σþ

c D̄0 threshold is highlighted. It is
apparent that such region has the largest impact. The amplifica-
tion at the edges is a spurious border effect.

FIG. 4. Dropout and bootstrap classification probability den-
sities for the predictions on cos θPc

-weighted LHCb dataset, for
each of the four classes. The bj4 (barely visible) and vj2 classes
concentrate their probability density near zero. The x axis is cut
for the purpose of visibility. The results for the other LHCb
datasets are provided in the Supplemental Material [19].

TABLE I. Softmax output probabilities [26] for the three
experimental datasets by LHCb [8].

bj2 bj4 vj2 vj4
cos θPc

-weighted 0.6% <0.01% 1.1% 98.3%
mKp > 1.9 GeV 1.4% <0.1% 1.6% 97.0%
mKp all 5.4% <0.1% 21.0% 73.6%

FIG. 5. cos θPc
-weighted LHCb data (left axis) and distribution

of their mean SHAP values (right axis) as a function of the J=ψp
invariant mass for the four classes. The results for the other LHCb
datasets are provided in the Supplemental Material [19].
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V. CONCLUSIONS

We presented a proof of concept of how machine
learning can be used to further our understanding of exotic
hadrons. We trained a neural network to learn the details of
line shapes corresponding to different resonance interpre-
tations, based on an effective range expansion of the
amplitude close to the relevant threshold. We apply this
method to determine the nature of the Pcð4312Þ signal seen
by LHCb. We determine the probability of each of the
classes of interest, given the experimental uncertainties and
resolution. A DNN classifier significantly favors a virtual
state interpretation, i.e., generated by an attraction force not
strong enough to form a bound state, thereby confirming
the findings in Ref. [11]. By adding SHAP value analyses,
we study how each data point impacts the selection. This
technique also allows to assess which set of physical
variables (in this case the energy range) is relevant to a
specific hypothesis, which in standard approaches is often a
heuristic guess. Our technique can be directly applied to
other (non)exotic signals close to a threshold opening.
We foresee various followups. For example, one can

reuse parts of DNN classifiers that generate line shape
representations (i.e., parameters in the first layers) and

reapply it to new data (so-called “transfer learning”) to
obtain general resonance classifiers across scattering chan-
nels, and predict which physics underlies other reac-
tion data.
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